Structure of acetyl chloride molecule isotopomers CH₃COCl and CD₃COCl in the ground and lowest excited singlet and triplet electronic states: a quantum-mechanical study

A. V. Kudich, V. A. Bataev, * and I. A. Godunov

Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russian Federation. Fax: +7 (095) 939 3689. E-mail: lant@phys.chem.msu.ru

The structures of isotopomers of conformationally flexible acetyl chloride molecule, CH_3COCl and CD_3COCl , in the ground (S_0) and lowest excited singlet (S_1) and triplet (T_1) electronic states were calculated by the RHF, MP2, and CASSCF methods. The equilibrium geometric parameters and harmonic vibrational frequencies of the molecules in these electronic states were estimated. According to calculations, electronic excitation causes considerable conformational changes involving rotation of the CH_3 (CD_3) top and a substantial deviation of the CCOCl fragment from planarity. The results of calculations agree with experimental data. Two-dimensional torsional-inversion sections of the potential energy surface were calculated and analyzed. Vibrational problems for large-amplitude vibrations (torsional vibration in the S_0 state and both torsional and inversion vibrations in the T_1 and T_2 states) were solved in one- and two-dimensional approximations.

Key words: *ab initio* quantum-chemical calculations, carbonyl compounds, acetyl chloride, isotopomers, vibrational frequencies, potential energy surface, ground electronic state, excited electronic states.

Studies on the structures of conformationally flexible molecules in the ground and excited electronic states are of considerable importance from both practical and theoretical standpoints. The structures of stable conformers, the energy differences between them, and the heights of potential barriers to conformational transitions are responsible for a number of the most important properties of molecules and compounds. $^{1-3}$ These are the electrical and optical properties, thermodynamic characteristics, reactivity and biological activity, mechanisms of chemical (including photochemical) reactions, etc. Prediction of the structure and properties of such molecules first of all requires obtaining and accumulation of relevant experimental and theoretical data. Besides, of considerable interest is to elucidate (i) the physical nature of the potentials of internal rotation and inversion and (ii) conformational changes accompanying the electronic excitation of molecules (see, e.g., Refs 1—5).

It was experimentally established that transitions of certain molecules of carbonyl compounds with symmetrical CR₃ (R = H, D, F, Cl, CH₃) tops from the ground state S₀ to the lowest excited singlet (S₁) and triplet (T₁) electronic states are accompanied by significant changes in the equilibrium geometric structures, namely, by rotation of the tops by about 60° and by pyramidalization of carbonyl fragments. $^{5-11}$

Experimental studies of the structure of conformationally flexible molecules (especially if they are in excited electronic states) face severe difficulties, which are first of all associated with possible ambiguity of band assignment in the vibronic spectra and instability of inverse problems of the determination of potentials of internal rotation and inversion. Therefore, quantum-mechanical calculations can serve as both an additional source of structural information and a method of analysis of the nature of conformational effects.⁵

Theoretical studies $^{12-15}$ of aldehyde molecules CX_3CHO (X = H, F, Cl) in the S_0, S_1 , and T_1 states showed that the $S_1 \leftarrow S_0$ and $T_1 \leftarrow S_0$ electronic excitations of these molecules cause changes in the orientation of the CX_3 top and a pyramidal distortion of the CCHO fragment, which is planar in the S_0 state. The results obtained in those studies are in agreement with experimental data.

The structures of carboxylic acid haloanhydrides were studied much poorer. However, experimental studies of, e.g., HFCO, HClCO, F₂CO, Cl₂CO, CH₃COF, and CH₃COCl also revealed a pyramidal distortion of the carbonyl fragment upon electronic excitation of the molecules to the S₁ state. ^{16–18} For CH₃COF and CH₃COCl we showed that excitation also changes the orientation of the methyl top relative to the molecular skeleton.

In this work we present the results of an *ab initio* quantum-chemical study of the potential energy surfaces (PES) of acetyl chloride molecule isotopomers CH_3COCl (1) and CD_3COCl (2) in the S_0 , T_1 , and S_1 states. Excited-state calculations and detailed analysis of anharmonic large-amplitude vibrations (torsional and inversion motions of nonplanar carbonyl fragment) were performed for the first time.

Calculation Procedure

Based on our experience 19,20 in theoretical studies of the molecules of carbonyl compounds in the $S_0,\,T_1,$ and S_1 electronic states, the complete active space multiconfiguration self-consistent field (CASSCF) method and a conventional basis set 6-31G(d,p) was chosen as the main computational method. Calculations in the CASSCF approximation with the active space of five MOs, which are mainly localized on the carbonyl group (we conditionally denote them as $\sigma_{CO},\,\pi_{CO},\,n_O,\,\pi_{CO}^*$ and σ_{CO}^*) and occupied with six electrons, allow the structure of carbonyl compounds both in the ground state and in the lowest excited electronic $n\pi^*$ -states to be studied reliably at a reasonable computational cost.

Calculations of molecule 1 in the S_1 state (hereafter, $\mathbf{1}(S_1)$, etc.) were carried out with full optimization of the second root of the multiconfiguration secular equation. In this case, the problem of variational collapse of the S_0 and S_1 states of molecule 1 (similarly to other compounds we studied earlier¹⁹) in the range of the geometric parameters under study did not arise when the initial approximation involved the orbitals corresponding to the symmetrical nuclear configuration in which the S_0 and S_1 states belong to different irreducible representations of the C_s group.

Ground-state calculations were also carried out by the RHF and MP2 methods. Perturbative calculations were also performed with the 6-311++G(f,d,p) extended basis set constructed from conventional 6-311++G(d,p) basis set augmented with f-functions for the Cl atoms. All quantum-chemical calculations were carried out using the GAMESS (US) program package²¹ (PC GAMESS version).*

The vibrational frequencies of the molecule were calculated in the harmonic approximation. For the large-amplitude vibrations (torsional in the S_0 state and torsional and inversion in the T_1 and S_1 states), the one-dimensional (1D) and two-dimensional (2D) anharmonic vibrational problems were also solved by the variational method. The methods for solution of such vibrational problems were described in detail in the literature. $^{19,22-24}$ The Hamiltonian of the vibrational motion had the form

$$\hat{H}(\varphi_{1}, ..., \varphi_{n}) = -\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial \varphi_{i}} B_{ij}(\varphi_{1}, ..., \varphi_{n}) \frac{\partial}{\partial \varphi_{i}} + V(\varphi_{1}, ..., \varphi_{n}), \quad (1)$$

where n is the number of the vibrational coordinates included; B_{ij} are the elements of the symmetrical matrix of the kinetic parameters, which was chosen so as to provide the separation of vibrational and rotational motions of the molecule in accor-

dance with the Eckart conditions and V is the potential function. Internal rotation and inversion of the molecule were characterized by the angle of rotation of the COCl fragment and methyl group about the C—C bond (ϕ_1) and the angle between the C—Cl bond and the CCO plane (ϕ_2) , respectively. To retain the symmetry of the problem, the average value of the change in three O—C—C—H(D) dihedral angles relative to the chosen conformation was taken as the ϕ_1 variable.

In solving the 1D vibrational problems for internal rotation, the parameters B and potential function V were approximated by the following expressions

$$V(\varphi_1) = \frac{1}{2} \sum_{k} V_k (1 - \cos k \varphi_1), \tag{2}$$

$$B(\varphi_1) = B_0 + \sum_k B_k \cos k \varphi_1. \tag{3}$$

When solving the vibrational problem for the inversion motion, the potential V was approximated at reference points by polynomials or by the following functions

$$V(Q) = \sum_{k} V_k Q^k + F(Q), \tag{4}$$

where $Q = R(C-H) \cdot \varphi_2$; F(Q) is the Gauss function

$$F(Q) = A \cdot \exp(-CQ^2)$$

or the Lorentz function

$$F(Q) = A/(C + Q^2),$$

where A and C are constants; the function B was approximated by a polynomial expansion in terms of Q.

In solving the 2D vibrational problems for the systems in excited electronic states the $B_{ij}(\varphi_1,\varphi_2)$ and $V(\varphi_1,\varphi_2)$ values were determined from the results of CASSCF/6-31G(d,p) calculations; the variables were changed in the ranges $0 \le \varphi_1 \le 60^\circ$ and $0^\circ \le \varphi_2 \le 60^\circ$ with an increment of 10° (the remaining geometric parameters were optimized in the course of the *ab initio* calculations). Based on the values obtained, the functions B_{ij} and V were approximated by linear combinations of trigonometric functions

$$B_{ij}(\varphi_1, \varphi_2) = \sum_{K} \sum_{L} C_{KL}^{cc} \cos K \varphi_1 \cos L \varphi_2 +$$

$$+ \sum_{K} \sum_{L} C_{KL}^{ss} \sin K \varphi_1 \sin L \varphi_2,$$
(5)

$$V(\varphi_1, \varphi_2) = \sum_{K} \sum_{L} V_{KL}^{cc} \cos K \varphi_1 \cos L \varphi_2 +$$

$$+ \sum_{K} \sum_{L} V_{KL}^{ss} \sin K \varphi_1 \sin L \varphi_2.$$
(6)

The periodicity of the functions $B(\varphi_1)$, $V(\varphi_1)$, $B_{ij}(\varphi_1,\varphi_2)$, and $V(\varphi_1,\varphi_2)$ requires that the k and K subscripts in expressions (2)—(6) be a multiple of three.

The one- and two-dimensional B and V surfaces thus constructed were used to solve the 1D and 2D vibrational problems by the variational method with the basis set of trigonometric functions. The 1D vibrational problem for the inversion motion was solved using the basis set of harmonic oscillator functions.

^{*} A. A. Granovsky, http://classic.chem.msu.su/gran/gamess/index.html.

Fig. 1. Newman projections of the $CX_3COCl\ (X=H,D)$ molecules in the ground (S_0) and lowest excited singlet (S_1) and triplet (T_1) electronic states $(\phi_2$ is the angle of deviation of the C—Cl bond from the CCO plane).

Results and Discussion

Ground electronic state. Microwave spectroscopy²⁵ and gas-phase electron diffraction²⁶ studies of acetyl chloride molecule in the S_0 state showed that it exists as a single conformer in which one H atom eclipses the O atom (Fig. 1). The results of the *ab initio* RHF and MP2 calculations^{27,28} in the 3-21G, 3-21G(d), and 6-31G(d) basis sets are in agreement with these data, whereas the MNDO semiempirical method²⁷ predicts that an H atom eclipses the Cl atom in the most stable conformation.

By and large the geometric parameters of molecule $1(S_0)$, obtained both experimentally 25,26,28 and from RHF,

MP2, and CASSCF calculations are in good agreement with one another and with the available calculated data^{27,28} (Table 1). As should be expected,²⁹ the RHF calculated C=O bond length is shorter than the experimental values. MP2 and CASSCF calculations with inclusion of electron correlation effects predict a more realistic value. The C—C bond length depends only slightly on the computational methods employed; the CASSCF approximation gives the poorest results for the C—Cl bond. This can be due to the fact that the active space of orbitals contains no orbitals that are mainly localized on the Cl atom. By and large the best agreement between geometric parameters is provided by the MP2/6-311++G(f,d,p) calculations.

The harmonic and experimental 28,30 vibrational frequencies of molecules $\mathbf{1}(S_0)$ and $\mathbf{2}(S_0)$ are listed in Table 2. They are in reasonable agreement with experimental data. The inclusion of electron correlation leads to a typical situation where all MP2 calculated frequencies are to a variable extent underestimated compared to the results of Hartree—Fock calculations, bringing them closer to the experimental values.

Estimates of the height of the potential barrier to internal rotation in acetyl chloride molecule obtained by microwave^{25,31,32} and vibronic¹⁸ spectroscopy are in good agreement, namely, 453,²⁵ 472,³¹ 445,³² and 490 cm⁻¹.¹⁸ The torsional frequencies calculated from these values are 136 cm⁻¹ for isotopomer 1 (see Ref. 30) and 100 (see Ref. 30) and 106 cm⁻¹ (see Ref. 18) for isotopomer 2. However, the authors of Ref. 28 assigned a far-IR band at 162.8 cm⁻¹ to the torsional frequency of molecule 1 and estimated the barrier to internal rotation at 622 cm⁻¹. The possibility of another assignment of the band at 162.8 cm⁻¹ was also pointed out.²⁸

Table 1. Calculated and experimental ground-state geometric parameters of CH₃COCl (S₀) molecule

Parameter		Com	putational me	ethod			Experimen	t
-	RHF /6-31G(d,p)	MP2 /6-31G(d) ²⁸	MP2 /6-31G(d,p)	MP2 /6-311++G(f,d,p)	CASSCF /6-31G(d,p)	I ^a	Π^b	III^c
Bond				d/Å				
C=O	1.167	1.200	1.201	1.192	1.201	1.192(10)	1.185(3)	1.185(5)
C-C	1.502	1.499	1.500	1.502	1.501	1.499(10)	1.505(3)	1.501(6)
C-Cl	1.784	1.798	1.799	1.789	1.775	1.789(5)	1.796(2)	1.796(5)
C-H(1)	1.081	1.090	1.086	1.090	1.081	1.083(5)	1.092(5)	1.093(2)
C-H(2)(H(3))	1.083	1.092	1.088	1.092	1.083	1.083(5)	1.092(5)	1.096(2)
Angle				ω/deg				
C-C-O	127.1	127.4	127.3	127.5	126.3	127.08(16)	127.2(5)	127.4(5)
C-C-C1	112.9	112.0	112.0	111.7	113.9	112.67(50)	111.6(6)	112.2(1)
C-C-H(1)	108.6	108.8	108.8	109.3	108.7	110.33(16)	110.7(8)	108.8(5)
C-C-H(2)(H(3))	109.7	109.7	109.5	109.2	109.9	110.33(16)	110.7(8)	109.4(3)
H(1)-C-H(2)(H(2))	(3)) 110.4	110.4	110.5	110.7	110.2	109.50(20)	108.8(8)	109.4(3)

^a Obtained by microwave spectroscopy.²⁵

^b Obtained by gas-phase electron diffraction.²⁶

^c Obtained by microwave spectroscopy using the C—H bond lengths determined in the approximation of separated C—H vibrations.²⁸

Table 2. Harmonic frequencies (v_i) of molecules 1 and 2 in the S_0 , T_1 , and S_1 states, calculated in the 6-31G(d,p) basis set

Sym- v_i		Approximate			S_0			T_1	S	1
metry of vibr- ations ^a	/cm ⁻¹	assignment ^b of vibrations	MP2	MP2 ^c	CASSCF	Exper- iment ²⁸ d	UHF	CASSCF	CASSCF	Exper- iment ¹⁸ d
				(CH ₃ COCl (1)				
a´	v_1	$v^{as}(CH_3)$	3275	3211	3316	3027	3296	3295	3295	_
	v_2	$v^{s}(CH_{3})$	3149	3092	3290	2948	3187	3192	3190	_
	v_3	v(CO)	1863	1835	1846	1818	1384	1318	1294	1223
	v_4	$\delta^{as}(CH_3)$	1523	1485	1592	1417 ^e	1601	1602	1602	_
	ν ₅	$\delta^{s}(CH_{3})$	1441	1406	1540	1368	1541	1544	1545	_
	v_6	$\rho(CH_3)$	1157	1139	1218	1108	1032	1005	992	_
	v_7	v(CC)	997	981	1054	956	1179	1183	1199	922
	v_8	δ(COCl)	626	629	670	607	372	366	376	_
	V ₉	v(CCl)	454	462	489	444	693	700	706	690
	v_{10}	ρ(COCl)	354	350	368	348	330	329	330	298
a"	v_{11}	$v^{as}(CH_3)$	3249	3186	3213	2990e	3263	3265	3263	_
	v_{12}	$\delta^{as}(CH_3)$	1527	1485	1602	1431	1607	1609	1607	_
	ν ₁₃	$\delta(CH_3)$	1075	1046	1139	1032	1154	1153	1184	_
	ν ₁₄	Inversion ^f	523	519	537	514	451	439	427	452
	ν ₁₅	Torsional	145	134	155	$163 \ (136^g)$	205	205	205	148
	15			(CD ₃ COCl (2)				
a′	v_1	$v^{as}(CD_3)$	2431	2383	2462	2266	2444	2442	2443	_
	v_2	$v^{s}(CD_{3})$	2262	2220	2309	2138	2292	2295	2294	_
	v_3	v(CO)	1860	1832	1841	1821	1372	1223	1203	1222
	v_4	$\delta^{as}(CD_3)$	1194	1170	1268	1027^{e}	1155	1156	1151	_
	v_5	$\delta^{s}(CD_{3})$	1095	1066	1148	1138	1059	1064	1074	_
	v_6	$\rho(CD_3)$	1006	991	1063	819	855	841	839	_
	ν ₇	v(CC)	849	831	893	960	1245	1316	1313	877
	v_8	δ(COCl)	579	583	623	559	362	357	367	_
	v_9	v(CCl)	451	458	483	441	652	659	663	609
	v_{10}	ρ(COCl)	317	314	331	314	297	297	298	_
a"	v_{11}	$v^{as}(CD_3)$	2406	2358	2437	2247^{e}	2417	2420	2417	_
	v_{12}	$\delta^{as}(CD_3)$	1101	1070	1154	1041^{e}	1152	1153	1155	_
	v_{13}	$\delta(CD_3)$	902	883	947	872^{e}	947	947	944	_
	ν ₁₄	Inversion ^f	463	458	481	451 ^e	418	407	395	_
	v ₁₅	Torsional	104	97	113	106 ¹⁸ (100 ^g)	147	148	148	128

^a Only for the S₀ state.

Table 3 lists the results of solution to the 1D torsional problem for molecules $\mathbf{1}(S_0)$ and $\mathbf{2}(S_0)$ by the CASSCF, RHF, and MP2 methods in the 6-31G(d,p) basis set and by the MP2/6-311++G(f,d,p) method. The estimates of the barriers to internal rotation (coefficient V_3 in expression (2)) differ insignificantly. The calculated energies of torsional levels are by and large close to the experimental values. 18,25,31,32

Excited electronic states. According to our calculations of acetyl chloride molecule in the S_1 and T_1 states, the global minimum on the PES corresponds to a conformation with nonplanar CCOCl fragment and a rotated

top (Table 4, Fig. 1). Earlier, ¹⁸ a pyramidal structure of this fragment was established in an experimental study of the $S_1 \leftarrow S_0$ vibronic spectra of molecules 1 and 2. In that study the estimate of the equilibrium value of the angle, θ_m , between the C=O bond and the CCCl plane was obtained by fitting the calculated and experimental rotational contours of the 0_0^0 band in the vibronic spectrum of molecule 1, which gave $\theta_m = 45^\circ$. The solution to the inverse spectral problem for the inversion motion gives $\theta_m = 37$ or 40° depending on the shape of the model potential. ¹⁶ Our CASSCF/6-31G(d,p) calculations predict $\theta_m = 42^\circ$. Note that pyramidalization of the CCHO

^b Notations: v is stretching, δ is bending, and ρ is rocking vibration.

^c Calculated with the 6-311++G(p,d,f) basis set.

^d These experimental frequencies were obtained in the gas phase unless otherwise specified.

e Solid phase.

f In the S_0 state, the out-of-plane CCl vibration.

g See Ref. 30 (calculated using the published³¹ height of potential barrier to internal rotation).

		. 0	0,			
Computational method	V_3	V_6	1e←0e	2e←1e	3e←1e	4e←1e
			cm	-1		
		(CH ₃ COCl ((1)		
RHF/6-31G(d,p)	456.1	-10.5	133	121	213	321
MP2/6-31G(d,p)	418.6	-14.1	125	114	198	306
MP2/6-311++G(f,d,p)	421.2	-26.8	120	113	201	308
CASSCF/6-31G(d,p)	497.1	-11.4	140	128	228	337
			CD ₃ COCl	(2)		
RHF/6-31G(d,p)	456.1	-10.5	99	93	177	254
MP2/6-31G(d,p)	418.6	-14.1	92	87	166	239
MP2/6-311++G(f,d,p)	421.2	-26.8	88	85	165	239
CASSCF/6-31G(d,p)	497.1	-11.4	103	97	187	269
Experiment ¹⁸	490	_	_	97	184	265

Table 3. Parameters V_3 and V_6 1D potential functions internal rotation and energy torsional transitions for molecules $\mathbf{1}(S_0)$ and $\mathbf{2}(S_0)$

Note. The potential barriers to internal rotation of acetyl chloride molecule, determined by microwave and vibronic spectroscopy, lie in the interval 445—490 cm⁻¹ (see text).

Table 4. Geometric parameters of CH_3COCl molecule (1) in the excited electronic states S_1 and T_1 , calculated in the 6-31G(d,p) basis set

Parameter	S_1	7	Γ_1
	CASSCF	UHF	CASSCF
Bond		d/Å	
C=O	1.392	1.344	1.374
C-C	1.496	1.500	1.500
C-Cl	1.737	1.747	1.745
C-H(1)	1.084	1.084	1.084
C-H(2)	1.082	1.082	1.082
C-H(3)	1.086	1.086	1.086
Angle		ω/deg	
C-C-O	114.2	114.0	113.9
C-C-Cl	118.9	117.8	118.1
C-C-H(1)	109.3	109.3	109.4
C-C-H(2)	110.0	109.6	109.6
C-C-H(3)	110.8	111.1	111.2
C-Cl*	40.3	41.0	41.1
H(1)-C-H(2)	108.7	108.8	108.7
H(1)-C-H(3)	108.7	108.9	108.9
H(1)-C-C-O	52.2	51.8	50.7

^{*} Angle of deviation of the C—Cl bond from the CCO plane (φ_2) .

fragment on electronic excitation was also experimentally observed 5,15,33 for related CX₃CHO (X = H, F, Cl) molecules; here, the angle of deviation of the C—H bond from the CCO plane lies in the interval $35-37^{\circ}$.

Electronic excitation of acetyl chloride molecule to the T₁ and S₁ states causes a significant lengthening of the C=O bond and a decrease in the C-C-O angle (see Tables 1 and 4); this is characteristic of the molecules of carbonyl compounds.^{5,19,20} Experimental¹⁸ estimates of elongation of the C=O bond and of the decrease in the

C—C—O angle on $S_1 \leftarrow S_0$ electronic excitation of molecule 1 are 0.20 Å and 18° (cf. 0.19 Å and 12°, respectively, obtained from CASSCF/6-31G(d,p) calculations). Changes in the remaining geometric parameters are not so large. UHF/6-31G(d,p) calculations of acetyl chloride molecule in the T_1 state predict a somewhat smaller C=O bond length compared to the CASSCF method, but the remaining geometric parameters determined by these methods differ only slightly.

Harmonic vibrational frequencies of molecules 1 and 2 in the S_1 and T_1 states and the experimental frequencies of these molecules in the S_1 state are listed in Table 2. By and large the experimental and calculated results are in reasonable agreement. Excitation of the molecules to the S_1 state causes an appreciable decrease in the C=O stretching frequency, which is typical of $n\pi^*$ -electronic excitations of the molecules of carbonyl compounds. The frequency of the in-plane deformation vibration of the COC1 fragment (v_8) also decreases. Analogous changes were also observed in the case of $T_1 \leftarrow S_0$ electronic excitation. Note that the UHF and CASSCF calculated vibrational frequencies of both molecules in the T_1 state differ insignificantly.

The potential energy distribution (PED) for the normal vibrations corresponding to large-amplitude motions was analyzed using the results of the CASSCF calculations. It was found that the torsional motion makes a nearly 100% contribution to the corresponding normal vibrations of molecules 1 and 2 in the T_1 and S_1 states. This suggests quite a high degree of separation (in the harmonic approximation) of the torsional vibration from other molecular vibrations. The inversion vibration is much stronger coupled, namely, the contribution of the motion corresponding to the C—Cl bond deviation from the CCO plane is 60% for 1 (S_1 , T_1) and 50% for 2 (S_1 , T_1).

Table 5. Coefficients of approximation (V_{KL}^{cc} and V_{KL}^{sc}) of the potential functions V using expression (6) for molecule 1 in the S_1 and T_1 states

K	L	S_1	T_1
		Coefficients V_{KL}^{cc}	
0	0	23491.7	25374.5
0	1	-31773.9	-34778.9
0	2	9894.4	11404.0
0	4	507.4	275.4
0	6	_	97.6
0	8	21.8	_
0	12	-1.2	2.2
3	0	402.7	365.3
3	2	-348.5	-336.1
3	4	-40.4	-61.6
3	6	_	14.3
3	8	-16.1	-22.5
3	12	-0.8	_
6	0	-9.0	_
6	2	15.7	_
6	4	-3.3	7.6
6	6	_	-4.6
6	8	_	1.8
		Coefficients V_{KL}^{ss}	
3	1	158.4	460.8
3	3	-306.2	-801.0
3	4	_	381.8
3	6	19.7	-79.9
3	8	-26.2	_
3	10	_	-4.3
6	1	-107.6	-23.4
6	2	82.2	_
6	3	_	32.4
6	4	-13.8	-18.0
6	8	1.0	0.9

The results of calculations listed in Table 2 were obtained in the small vibration approximation, which is generally inapplicable to the description of large-amplitude motions. In these cases, anharmonic problems with the Hamoltonian (1) were solved.

Table 5 lists the CASSCF/6-31G(d,p) calculated coefficients for approximation of the 2D torsional-inversion sections of the PES of molecule 1 (S_1 , T_1) by expression (6). The map of the 2D section of the PES of system 1(S_1) is presented in Fig. 2. The calculated PES of molecule 1(T_1) is qualitatively similar and therefore not shown here. The barriers to conformational transitions in the case of internal rotation (V_t) and inversion (V_i)* are listed in Table 6. It should be noted that in spite of quite a high

Table 6. Barriers to conformational transitions for internal rotation (V_t) and inversion (V_i) and the standard deviations of approximation (6) (σ) for molecule 1 in the S_1 and T_1 states

State	$V_{\rm t}$	$V_{\rm i}$	σ			
		cm ⁻¹				
S_1	792	2140*	0.65			
T_1	791	2340	1.87			

Note. The values obtained by vibronic spectroscopy are as follows: $V_t = 520 \text{ cm}^{-1} \text{ and } V_i = 1720 \text{ cm}^{-1} \text{ for } \mathbf{1}(S_1)$ and $V_t = 695 \text{ cm}^{-1} \text{ for } \mathbf{2}(S_1)$.

degree of separation of torsional motions from other molecular vibrations in the harmonic approximations, the $V_{\rm t}$ values for molecules 1 and 2 determined independently from the experimental torsional energy levels are appreciably different (520 and 695 cm⁻¹, respectively, see Ref. 18).

The PES shown in Fig. 2 has six equivalent minima, because it corresponds to the molecular symmetry group G_6 , which is isomorphic to the D_3 group (see, e.g., Ref. 34). Aldehyde molecules $CX_3CHO(X = H, F, Cl)$ in excited electronic states are also characterized by similar PES. 19 Such PES exhibit two valleys with three minima in each valley; transitions between the minima occur by the torsional motion. Minima lying in the same valley are labeled identically, "a" or "b" (see Fig. 2). Transitions from one valley to the other correspond to inversion of the carbonyl fragment. It should be noted that for all compounds mentioned above minima in different valleys are markedly shifted relative to one another along the φ_1 coordinate. Therefore, if the torsional motion can in principle occur independently of inversion (all three minima in the same valley have the same coordinate φ_2), a "pure" inversion transition between two minima a and b is impossible.

In spite of qualitative similarity, the shape of the PES of the aldehyde CX_3CHO (X = H, F, Cl) and haloanhydride CH_3COY (Y = F, Cl) molecules in the S_1 and T_1 states exhibit significant differences. Because of this, interrelation between the torsional and inversion motions for these groups of molecules manifests itself in different manner. The PES of the aldehyde molecules are characterized by relatively low barriers to inversion (less than 1000 cm^{-1}) and clearly defined valleys connecting pairs of minima a and b, the curvature of the 1D minimum energy paths for the torsional and inversion motions being low. In this case the torsional-inversion interaction must mainly involve tunneling between valleys. The PES

^{*} The estimates of the parameter $V_{\rm i}$ obtained 16 in studies of stability of the 1D inverse spectral problem for ${\bf 1}(S_0)$ using different model potentials are very close, namely, 1740 and 1760 cm $^{-1}$.

^{*} An approximate estimate (see text).

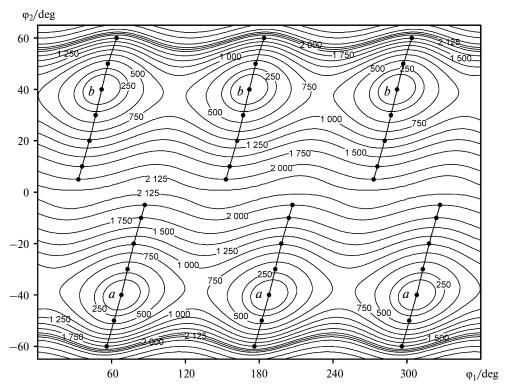
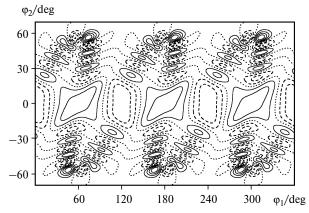



Fig. 2. Map of the 2D section of the PES of molecule 1 in the S_1 state (φ_1 is the torsional coordinate and φ_2 is the inversion coordinate). Shown are also fragments of the 1D minimum energy paths (cm⁻¹) for the inversion motion. Minima lying in the same valley are labeled identically (a or b).

of the haloanhydride molecules (data for Y = F were taken from Ref. 35) are characterized by high barriers (~2000 cm $^{-1}$ for 1 and ~4000 cm $^{-1}$ for CH $_3$ COF) between valleys, tunneling through which in the case of low-lying vibrational levels is hindered. This allows the motion in both valleys to be considered to some extent independently. In this case the torsional-inversion interaction is mainly due to anharmonicity of the potential in the valley and can be evaluated from the curvature of the 1D minimum energy paths.

Mention may also be made that the shape of the PES of molecule $\mathbf{1}(S_1)$ precludes unambiguous construction of the 1D path of inversion transition (at least in the coordinates used in this work). Continuous fragments of these paths are shown in Fig. 2. Near $\phi_2=0$, the 2D PES has a nearly flat region and the inversion reaction pathway is bifurcated. In such cases the 1D approximation can provide an inadequate description of upper-lying inversion states. This conclusion can also be drawn by analyzing the shape of the 2D torsional-inversion wave functions for the states lying near the barrier to inversion. An example of such a wave function is shown in Fig. 3.

Yet another problem posed in solving the vibrational problems is as follows: the shape of the PES of molecule 1 in the S_1 and T_1 states makes the description of high-lying states difficult. The large equilibrium value of ϕ_2 requires

Fig. 3. Map of the vibrational wave function corresponding to the torsional-inversion level of molecule **1** in the S₁ state with energy $E = 1935 \text{ cm}^{-1}$ (for φ_1 and φ_2 see caption to Fig. 2).

calculations of highly distorted structures with $\phi_2 > 70^\circ$ in order to provide a correct description of the outer walls of the potential; however, in this case one can not expect localization of electronic excitation only on the C=O fragment, and the MO active space employed in this work may appear to be inappropriate. With allowance for this fact in constructing the PES we did not include the points with $\phi_2 > 65^\circ$ for the S_1 state and with $\phi_2 > 70^\circ$ for the T_1 state.

Table 7. Energies (in cm⁻¹) of torsional-inversion levels of molecules $\mathbf{1}(S_1)$ and $\mathbf{2}(S_1)$: experimental and calculated for one-dimensional (1D) and two-dimensional (2D) problems

	$1(S_1)$		2(8	S ₁)	Assignment*
2D	1D	Experiment	2D	1D	
0	0	0	0	0	(0, 0) a, e
192	190	148	142**	140**	(1, 0) a, e
367	362	281	274	272	(2, 0) a
367	362	_	274	272	(2, 0) e
528	514	382	397	394	(3, 0) e
530	518	_	397	394	(3, 0) a
626	628	_	509	507	(4, 0) a
648	648	_	509	507	(4, 0) e
323	292	452	321	272	(0, 1) a,e
642	581	870	639	540	(0, 2) e
644	581	870	639	540	(0, 2) a
956	864	1227	952	803	(0, 3) e
961	864	1227	952	803	$(0, 3) a_1$
961	864	1244	952	803	$(0, 3) a_2$
1271	1142	1510	1258	1060	$(0, 4) a_1, e$
1271	1142	1586	1258	1060	$(0, 4) a_2, e$
1573	1411	1708	1554	1310	$(0, 5) a_1, e$
1569	1412	_	1554	1311	(0, 5) e
1569	1412	_	1555	1311	$(0, 5) a_2$

^{*} For notations (v_1, v_2) of the symmetry types of energy levels, see text.

The energies of a number of low-lying vibrational levels molecules of 1 and 2 in the T_1 and S_1 states, obtained in solving the 1D and 2D vibrational problems are listed in Tables 7 and 8. The corresponding states were assigned based on the results of analysis of the wave function localization regions and the structure of the nodal surfaces of the vibrational wave functions. The notations (v_1, v_2) in Tables 7 and 8 correspond to conditional assignment of the vibrational state in the approximation of separated torsional (v_1) and inversion (v_2) motions. For the 2D problem, the assignment of states can be done with ease provided that the wave functions are well localized. Since symmetry of the PES corresponds to the D_3 group, the torsional-inversion states are denoted using traditional notations of irreducible representations, viz., a₁, a₂, and e. Tables 7 and 8 list the results of separately solved 1D vibrational problems for the inversion motion and internal rotation. Table 7 also lists the experimental values of the energies of torsional and inversion levels of molecule $1(S_1)$.

A feature of the systems under study is degeneration of the low-lying levels a_1 and a_2 (degenerate levels are denoted as a in Tables 7 and 8) and two pairs of the e type levels. It is associated with a relatively high barrier to inversion in the S_1 and T_1 electronic states and, therefore,

Table 8. Energies (in cm⁻¹) of torsional-inversion levels of molecules $\mathbf{1}(T_1)$ and $\mathbf{2}(T_1)$ calculated for one-dimensional (1D) and two-dimensional (2D) problems

1 (T ₁)		2(7	Γ_1)	Assignment*	
2D	1D	2D	1D		
0	0	0.0	0.0	(0, 0) a, e	
192	191	142	141	(1, 0) a, e	
366	364	274	273	(2, 0) a	
367	364	274	273	(2, 0) e	
509	516	397	397	(3, 0) e	
511	520	397	397	(3, 0) a	
627	631	509	509	(4, 0) a	
646	650	509	509	(4, 0) e	
331	298	329	277	(0, 1) a, e	
660	592	654	550	(0, 2) a, e	
984	881	975	818	(0, 3) a	
986	881	975	818	(0, 3) e	

^{*} For notations (v_1, v_2) of the symmetry types of energy levels, see text.

with a very small tunneling splitting, which also depends on the mass of the particles involved in the vibrations.

The energies of the lowest torsional levels of molecules ${\bf 1}$ and ${\bf 2}$ in the T_1 and S_1 states, obtained in solving the 1D and 2D vibrational problems, are very close (see Tables 7 and 8). At the same time the energies of the inversion and, hence, torsional-inversion levels calculated for the 1D and 2D problems, differ appreciably, the differences increasing with the increase in the inversion quantum number. This is quite natural because of the peculiarities of the PES shape.

Thus, the results obtained show that the use of the CASSCF method and 6-31G(d,p) AO basis set in studies of the structure of molecules 1 and 2 in the ground (S_0) and lowest excited electronic states $(S_1 \text{ and } T_1)$ leads by and large to good agreement between the calculated equilibrium geometric parameters and harmonic vibrational frequencies and experimental data. In particular, the experimentally observed pyramidalization of the CCOCl fragment and rotation of the methyl top as a result of $S_1 \leftarrow S_0$ electronic excitations of the molecule are reproduced correctly.

The authors express their gratitude to Dr. V. I. Pupyshev for help in discussing the results obtained.

This work was carried out with the financial support from the Russian Foundation for Basic Research (Project No. 03-03-32146) and the Russian Federation State Program for Support of Leading Scientific Schools (Grant NSh 1275.2003.3).

References

 Internal Rotation in Molecules, Ed. W. J. Orville-Thomas, Wiley Interscience, New York, 1974.

^{**} Experimental values is 128 cm⁻¹.18

- D. G. Lister, J. N. MacDonald, and N. L. Owen, *Internal Rotation and Inversion*, Academic Press, London, 1978.
- 3. M. Oki, *The Chemistry of Rotation Isomers*, Springer-Verlag, Berlin, 1993.
- R. F. W. Bader, J. R. Cheeseman, K. E. Laidig, K. B. Wiberg, and C. Breneman, J. Am. Chem. Soc., 1990, 112, 6530.
- I. A. Godunov and N. N. Yakovlev, Zh. Strukt. Khim., 1995,
 36, 269 [Russ. J. Struct. Chem., 1995, 36, 238 (Engl. Transl.)].
- 6. R. D. Gordon, Int. Rev. Phys. Chem., 1986, 5, 121.
- 7. J. S. Crighton and S. Bell, *J. Mol. Spectrosc.*, 1985, **112**, 304.
- 8. D. C. Moule and K. H. K. Ng, Can. J. Chem., 1985, 63, 1378.
- I. A. Godunov, N. N. Yakovlev, and E. B. Averina, *Izv. Akad. Nauk. Ser. Khim.*, 1998, 294 [*Russ. Chem. Bull.*, 1998, 47, 287 (Engl. Transl.)].
- I. A. Godunov and N. N. Yakovlev, Zh. Fiz. Khim., 1998, 72, 1087 [Russ. J. Phys. Chem., 1998, 72, 969 (Engl. Transl.)].
- N. N. Yakovlev, M. N. Mikhailov, and I. A. Godunov, *Zh. Strukt. Khim.*, 1998, 39, 507 [Russ. J. Struct. Chem., 1998, 39, 413 (Engl. Transl.)].
- V. A. Bataev, V. I. Pupyshev, and I. A. Godunov, *Zh. Strukt. Khim.*, 1998, 39, 514 [*Russ. J. Struct. Chem.*, 1998, 39, 419 (Engl. Transl.)].
- V. A. Bataev, M. N. Mikhailov, A. V. Abramenkov, V. I. Pupyshev, and I. A. Godunov, *Zh. Strukt. Khim.*, 2001, 42, 69 [*Russ. J. Struct. Chem.*, 2001, 42 (Engl. Transl.)].
- V. A. Bataev, M. N. Mikhailov, A. V. Abramenkov, V. I. Pupyshev, and I. A. Godunov, *Zh. Strukt. Khim.*, 2001, 42, 867 [*Russ. J. Struct. Chem.*, 2001, 42 (Engl. Transl.)].
- V. A. Bataev, A. V. Abramenkov, and I. A. Godunov, *Struct. Chem.*, 2004, 15, 31.
- I. A. Godunov, A. V. Abramenkov, and A. V. Kudich, *Zh. Fiz. Khim.*, 1999, 73, 2004 [*Russ. J. Phys. Chem.*, 1999, 73, 1806 (Engl. Transl.)] and references cited therein.
- N. N. Yakovlev, I. S. Belozerskii, and I. A. Godunov, *Izv. Akad. Nauk. Ser. Khim.*, 1994, 1957 [*Russ. Chem. Bull.*, 1994, 43, 1846 (Engl. Transl.)].
- N. N. Yakovlev and I. A. Godunov, Zh. Fiz. Khim., 1995, 69, 480 [Russ. J. Phys. Chem., 1995, 69, 435 (Engl. Transl.)].
- V. A. Bataev, V. I. Pupyshev, A. V. Abramenkov, and I. A. Godunov, Russ. J. Phys. Chem., 2000, 74, Suppl. 2, S279.

- I. A. Godunov, V. A. Bataev, N. N. Yakovlev, and V. I. Pupyshev, *Zh. Fiz. Khim.*, 2002, 76, 1912 [*Russ. J. Phys. Chem.*, 2002, 76, 1732 (Engl. Transl.)].
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.
- A. Niño, C. Muñoz-Caro, and D. C. Moule, J. Phys. Chem., 1994, 98, 1519.
- 23. A. V. Abramenkov, *Zh. Fiz. Khim.*, 1995, **69**, 1048 [*Russ. J. Phys. Chem.*, 1995, **69**, 948 (Engl. Transl.)].
- I. A. Godunov, A. V. Abramenkov, and N. N. Yakovlev, Zh. Strukt. Khim., 1998, 39, 947 [Russ. J. Struct. Chem., 1998, 39, 774 (Engl. Transl.)].
- 25. K. M. Sinnott, J. Chem. Phys., 1961, 34, 851.
- 26. S. Tsuchiya and T. Iijima, J. Mol. Struct., 1972, 13, 327.
- V. P. Feshin and M. Yu. Kon'shin, *Zh. Obshch. Khim.*, 1996,
 66, 951 [*Russ. J. Gen. Chem.*, 1996, 66 (Engl. Transl.)].
- J. R. Durig, J. F. Davis, and G. A. Guirdis, J. Raman Spectrosc., 1994, 25, 189.
- W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, *Ab Initio Molecular Orbital Theory*, Wiley, New York, 1986.
- J. Overend, R. A. Nyquist, J. C. Evans, and W. J. Potts, *Spectrochim. Acta*, 1961, 17, 1205.
- 31. K. M. Sinnott, Bull. Am. Phys. Soc., 1956, 1, 198.
- R. V. Galeev, L. N. Gunderova, A. Kh. Mamleev, and N. M. Pozdeev, *Zh. Strukt. Khim.*, 1995, 36, 424 [*Russ. J. Struct. Chem.*, 1995, 36 (Engl. Transl.)].
- H. Liu, E. C. Lim, C. Muñoz-Caro, A. Niño, R. H. Judge, and D. C. Moule, *J. Mol. Spectrosc.*, 1996, 175, 172.
- P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed., NRC Research Press, Ottawa (Ontario, Canada), 1998.
- 35. A. V. Kudich, V. A. Bataev, A. V. Abramenkov, and I. A. Godunov, *Spectrochim. Acta, Part A*, 2004, **60**, 1995.

Received December 24, 2003; in revised form May 25, 2004